22 research outputs found

    Integrated mmWave Access and Backhaul in 5G: Bandwidth Partitioning and Downlink Analysis

    Full text link
    With the increasing network densification, it has become exceedingly difficult to provide traditional fiber backhaul access to each cell site, which is especially true for small cell base stations (SBSs). The increasing maturity of millimeter wave (mmWave) communication has opened up the possibility of providing high-speed wireless backhaul to such cell sites. Since mmWave is also suitable for access links, the third generation partnership project (3GPP) is envisioning an integrated access and backhaul (IAB) architecture for the fifth generation (5G) cellular networks in which the same infrastructure and spectral resources will be used for both access and backhaul. In this paper, we develop an analytical framework for IAB-enabled cellular network using which we provide an accurate characterization of its downlink rate coverage probability. Using this, we study the performance of two backhaul bandwidth (BW) partition strategies, (i) equal partition: when all SBSs obtain equal share of the backhaul BW, and (ii) load-based partition: when the backhaul BW share of an SBS is proportional to its load. Our analysis shows that depending on the choice of the partition strategy, there exists an optimal split of access and backhaul BW for which the rate coverage is maximized. Further, there exists a critical volume of cell-load (total number of users) beyond which the gains provided by the IAB-enabled network disappear and its performance converges to that of the traditional macro-only network with no SBSs

    A Stochastic Geometry Approach to Doppler Characterization in a LEO Satellite Network

    Get PDF
    A Non-terrestrial Network (NTN) comprising Low Earth Orbit (LEO) satellites can enable connectivity to underserved areas, thus complementing existing telecom networks. The high-speed satellite motion poses several challenges at the physical layer such as large Doppler frequency shifts. In this paper, an analytical framework is developed for statistical characterization of Doppler shift in an NTN where LEO satellites provide communication services to terrestrial users. Using tools from stochastic geometry, the users within a cell are grouped into disjoint clusters to limit the differential Doppler across users. Under some simplifying assumptions, the cumulative distribution function (CDF) and the probability density function are derived for the Doppler shift magnitude at a random user within a cluster. The CDFs are also provided for the minimum and the maximum Doppler shift magnitude within a cluster. Leveraging the analytical results, the interplay between key system parameters such as the cluster size and satellite altitude is examined. Numerical results validate the insights obtained from the analysis.Comment: Accepted in IEEE International Conference on Communications (ICC) 202
    corecore